Pink rot of potatoes – impact of soil factors (pH, Ca, physical properties) on disease expression; future challenges and opportunities.

Robert Tegg, Michael Rettke, Bill Cotching & Calum Wilson

Tasmanian Institute of Agriculture, University of Tasmania South Australian Research & Development Institute

Webinar - Overview

- Pink rot
 - Economics and significance
 - Symptoms
 - The causal agent (pathogen)

- Hort Innovation pilot project
 - Key findings
 - Challenges
 - Opportunities

In Tasmania – significant losses to pink rot – particularly over the last 3-4 years

"Some potato paddocks experience a regular substantial yield loss ranging from 5 to 30 per cent even when recommended fungicide treatments are applied,"

"paddocks with high levels of infection could be categorised as unsuitable for cultivation."

Jo Tubb, Simplot Australia potato agricultural manager, (The Advocate, Aug 2020)

"Some heavily infected paddocks only getting 10t/ac (25t/ha)."

NE grower, May 2021

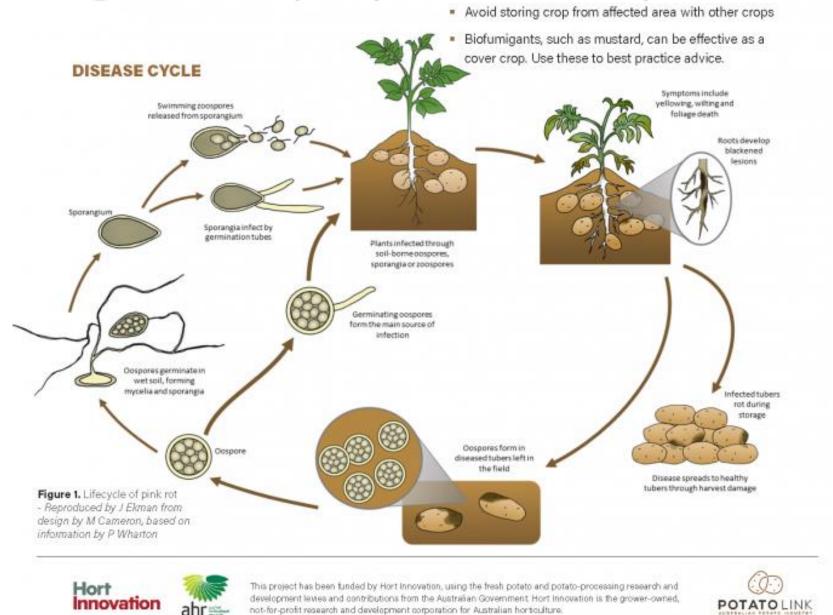
In Tasmania – why is it a problem?

- Main reasons include
 - Unseasonal rainfall events (environmental)
 - Reduced fungicide efficacy (pathogen) metalaxyl
 - Susceptible varieties Russet Burbank (host)
 - Time period in ground
- The pathogen *Phytophthora erythroseptica* can survive for long periods in the soil, like other soilborne pathogens.

Typical symptoms

Infested plants may wilt and collapse because of rotting at crown area.

Infected tubers turn pink after cutting. Distinct, unpleasant odour


Effects leaves, emergence and reduce yields. Tuber wounding, splitting promotes infection.

The pathogen - Phytophthora erythroseptica

The pathogen - Phytophthora erythroseptica

- Primarily soilborne can survive for long periods
- most active between 15-25°C
- Key infective structures germinating oospores, sporangia or zoospores – water films
- Key resting structures oospores

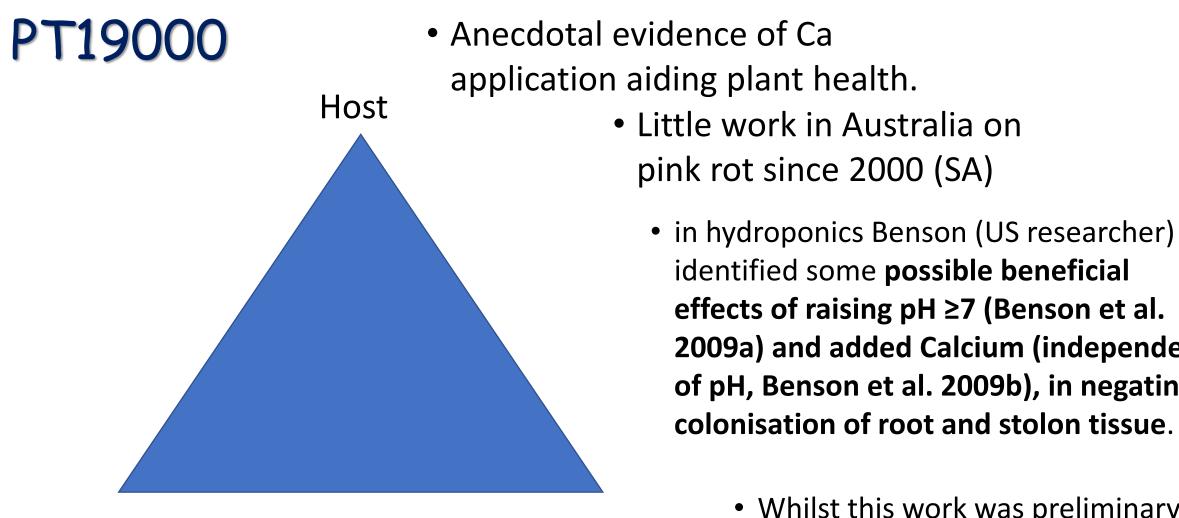
POTATO -FRESH FUND

POTATO -

PROCESSING FUND

• Oospores activation

──→ infe


infective structures

Water, soil components, root exudates PT19000- Investigating soil pH and nutrition as possible factors influencing pink rot in potatoes – a pilot study

- Investigate impact of soil pH and Ca formulations in field
- Investigate impact of landform and soil structure
- Identify knowledge gaps and opportunities from literature and industry

Pathogen

Environment

 Whilst this work was preliminary and didn't explore pink rot infection within the tuber, it is worthy of further investigation

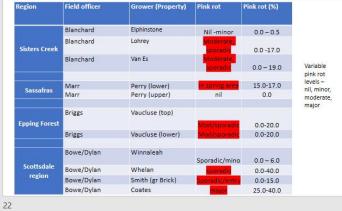
identified some **possible beneficial**

effects of raising $pH \ge 7$ (Benson et al.


2009a) and added Calcium (independent

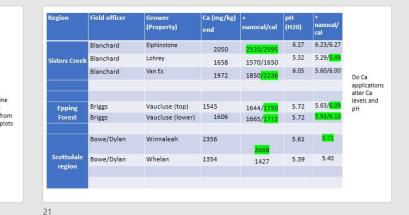
of pH, Benson et al. 2009b), in negating

colonisation of root and stolon tissue.


Field surveys/field trials

- Season 1 we **surveyed 11 potato paddocks** from specific zones (sites) known to have a recent history of pink rot (Sisters Beach, Sassafras, Scottsdale & surrounds, Midlands).
- Season 2 we surveyed 8 potato paddocks from the NE region

Field surveys/field trials - pH and Ca impacts



Region	Field officer	Grower (Property)	Ca (mg/kg) start	end	pH (H20)	end
Sisters Creek	Blanchard	Elphinstone	2576	2050	6.24	6.27
	Blanchard	Lohrey	1643	1658	5.36	5.32
	Blanchard	Van Es	2061	1972	6.08	6.05
	Marr	Perry (lower)	1052	1045	5.59	525
Sassafras	Marr	Perry (upper)	562	593	5.24	4.95
Epping	Briggs	Vaucluse (top)	1533	1545	6.43	5.72
Forest	Briggs	Vaucluse (lower)	1672	1606	6.60	5.72
	Bowe/Dylan	Winnaleah	2170	2356	5.46	5.61
Scottsdale	Bowe/Dylan	Whelan	1404	1354	5.56	5.39
region	Bowe/Dylan	Smith (gr Brick)	1508	1317	5.68	5.46
	Bowe/Dylan	Coates	2005	1924	5.51	5.37

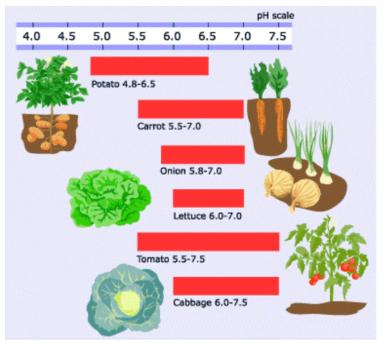
20

Region (field officer)	Grower (Property)	Variety	Pink rot (%	incidence)	Hollow hea	rt (% incidence)	a) ·	6
			control	Calc treatment	control	Calc treatment			
Sisters Creek	Elphinstone	Barossa	0.0	0.0	2.0	0.0	Yield v	vork	
(Blanchard)	Lohrey	R. Burbank	0.4	1.6	4.7	12	(10 pla	int plots	5)
(chance of	Van Es	R. Russet	12.6	6.2*	0	0	V	an Es La	ahrey
Epping	(upper)	R. Burbank	tbc	tbc	tbc	tbc	control	21.05	19.7
Forest	(lower)	R. Burbank	tbc	tbc	tbc	tbc	transformer	19.17	19.0
(Briggs)									
Scottsdale	Winnaleah	R. Burbank	0.0	0.9	18.7	14.0	nanocali I transformer	20.08	23.3

Scottsdale

• Did higher levels of Ca/higher pH levels

at the Win site reduce pink rot?


Bowe/Dylan	Win	2170	2356	5.46	5.61	0.0-6.0
Bowe/Dylan	Wh	1404	1354	5.56	5.39	0.0-40.0
Bowe/Dylan	S (gr Brick)	1508	1317	5.68	5.46	0.0-15.0
Bowe/Dylan	с	2005	1924	5.51	5.37	25 0-40 0

- Pot trials will see larger modifications in pH levels tested in the future
- Sandy loam pH 6.4 up to 7.4 with 4t/ha calciprill.
- Ferrosol pH 5.5 up to 7.4 with 17t/ha calciprill (realistic?)
- Different buffering capacities.

24

Soil pH and Ca

Optimal soil pH

http://www.agroconection.com/soil/soil-ph-an-overview/

Key results

From 19 field sites over 2 years:

- pH ranged from 5.2 6.6 at planting
- At harvest pH had dropped in most soils by 0.1 0.6 units.
- Where Ca (nanocal, calciprill, etc.) was applied pH was maintained or slightly raised – however no reduction in pink rot was recorded
- Calcium applications/or raising pH are not a silver bullet
 - Not that practical in highly buffered soils (ferrosols)
 - They may offer general soil health benefits.

Measuring soil health

Figure 1: Assess soil structure by digging holes.

- Chemical, physical and biological properties
- Often looked at separately
- But these properties are interconnected
- Look, dig, feel, smell, measure

utas.edu.au/tia

From: Cotching, Soil Quality Pty Ltd, 2019.

Measuring soil health – physical properties

SOIL STRUCTURE SCORECARD For clay loam textured topsoils in Tasmania

- Large compact clods (50-100 mm).
- Score 1-2
 Few fine aggregates.
 - Clods are angular or plate-like with smooth sides and no pores.

- Mainly firm large clods (20–50 mm) that are angular with smooth faces and no pores.
- Clods and overworked soil break into loose powdery soil.

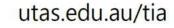
- Few medium and large firm, rounded aggregates (5–30 mm).
- Score 5–6

Score 3-4

Mostly finer aggregates (< 2 mm).
Some powdery unaggregated soil.

- Friable soil with many rounded aggregates (5–20 mm).
- Score 7–8 Many fine rounded aggregates (< 2 mm).</p>
 - Little powdery unaggregated soil.

Porous loose soil with many rounded, irregular shaped aggregates (2–10 mm).


- Score 9–10 Large aggregates have many holes for good aeration and drainage.
 - Little or no powdery unaggregated soil.
 - Often has abundant very fine roots.

tia TASMANIAN INSTITUTE OF AGRICULTURE

TIA is a joint venture of the University of Tasmania and the Tasmanian Government

From: Cotching, Soil Quality Pty Ltd, 2019. http://soilquality.org.au/factsheets/soil-structure

Topography and landscape influence - N. Scottsdale

 Hill (1/20 plots with pink rot)

 Base (5/20 plots with pink rot)

Preplant

Harvest

Topography and landscape influence - Cuckoo



Unsuitable planting site – boggy

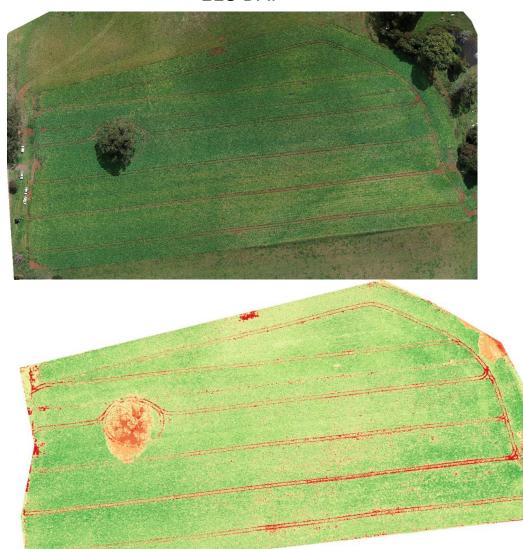
Topography, soil depth and quality – Sisters Creek

	Landscape	Topsoil depth	Soil structure	
Site No.	position	(cm)	score	Soil order
1	flat (concave)	32	5-6	Ferrosol
2	midslope (convex)	28	8	Ferrosol
3	crest (convex)	26	5-6	Ferrosol
4	flat (concave)	<mark>40</mark>	<mark>8</mark>	Ferrosol
5	hillslope	27	5	Ferrosol
	headland (near			
6	gate)	<mark>25</mark>	<mark>3-4</mark>	Ferrosol

- Topsoil depth/slope and soil structure a useful guide for assessing where pink rot is likely to occur
- Typified by disease in headland etc..

Topography and soil depth -Sisters Creek

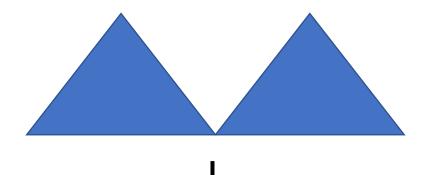
34 DAP

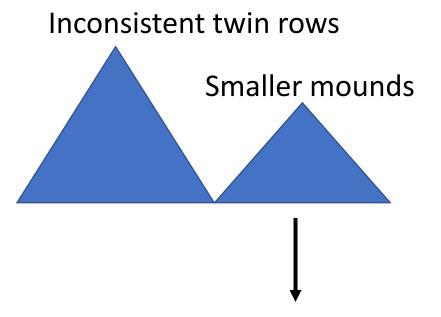


• Greater topsoil less topsoil, high depth (22-26cm) slope (18cm)

Pathogen identified in early December; PreDicta Pt; in slope area

Images Supplied – Ed Blanchard - Simplot


118 DAP


Pink rot disease was more related to topography – earlier dieback

Mound (Hill) depth consistency and orientations

Equal consistent twin rows

Less likelihood of pink rot

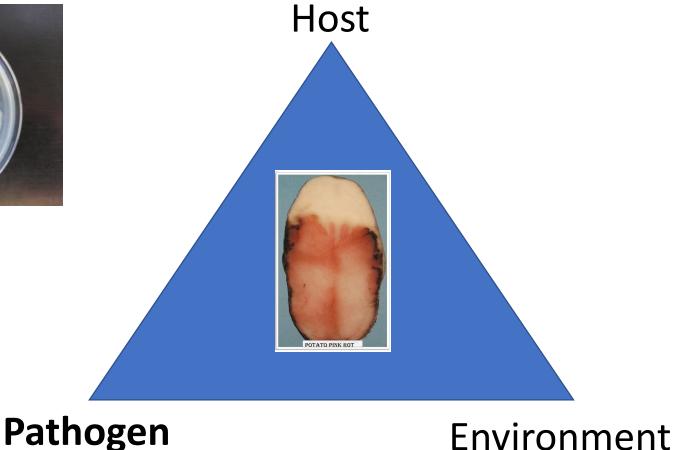
Greater likelihood of pink rot

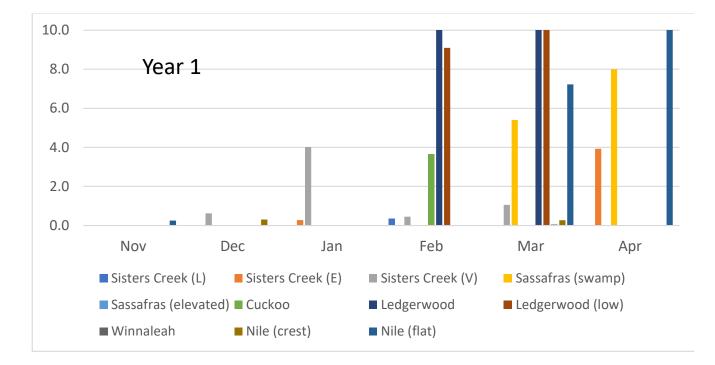
Orientation changes in rows

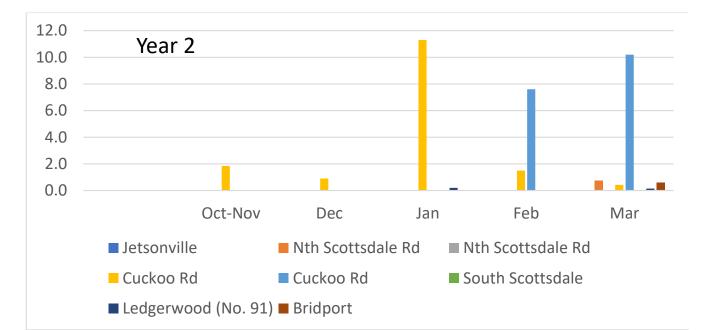
Rows 90° to each other

Greater likelihood of pink rot from where downward rows cross into headland rows.

Some key disease findings from field trials

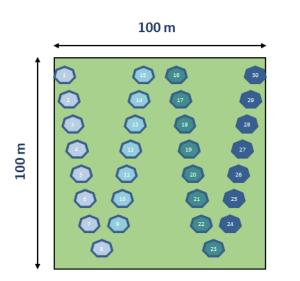

- Soil water and topography is obviously a key issue but other soil factors important:
 - Topsoil depth
 - Topsoil quality (fit for purpose)
 - Ca and pH (maybe less important)
- Other physical interactions
 - Irrigator/tractor run damage \uparrow likelihood of pink rot
 - Wind damage \uparrow likelihood of pink rot
 - Headland damage (compaction) ↑ likelihood of pink rot
 - Mould depth and orientations
- Some factors can be controlled (irrigation), some we can't (rainfall)

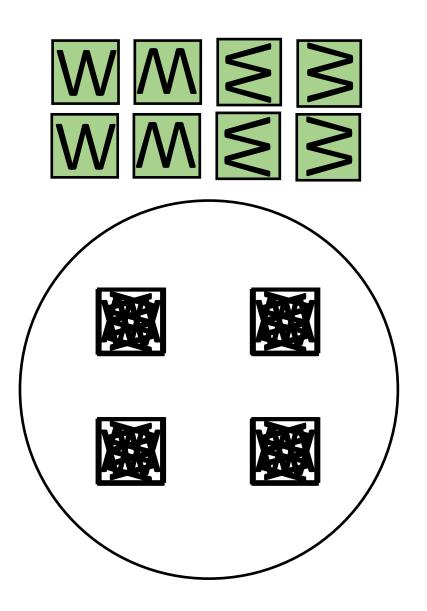

Pathogen detection - Phytophthora erythroseptica

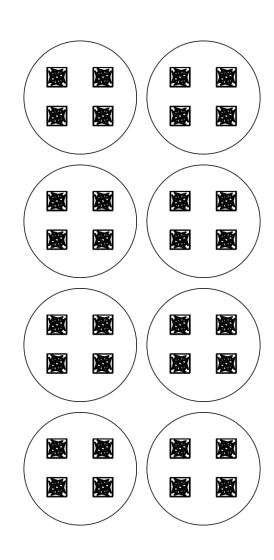


Detection (PreDicta Pt) from soil:

- Sampling density
- Environmental impacts
- Useful risk assessment



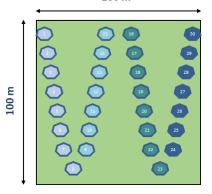



- Pre-plant soil-borne inoculum detection is extremely difficult
- Important levels may be below detection limit
- Inoculum levels dynamic through season
- Sampling strategy (where and when) will be critical

Individual test PREDICTA Pt sampling

30 cores (1 cm by 15 cm) Approximately 500g

Intensive sampling required when low levels of inoculum can pose a substantive disease risk


> Samples required in a paddock for detection at varying degrees of confidence

80%	90%	95%
7	10	12

Current PREDICTA Pt sampling advises 4 samples in a paddock larger than 10 ha

Pivot site and sampling location

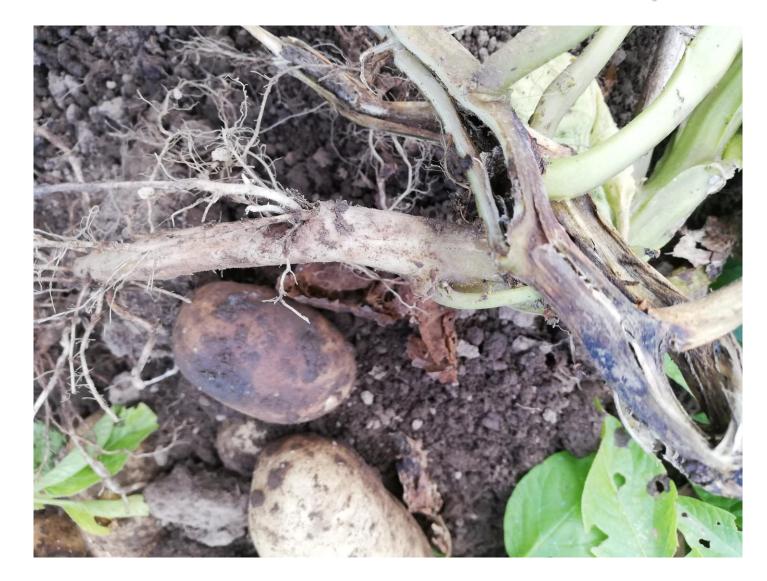
Research gap - Optimising detection of P. erythroseptica for improved risk detection

100 m

What is the best soil sampling density, what is economical

When is the best time to sample (seasonal)

Should we enrich the soil sample



Research gap - Alternate hosts and volunteers

- What other crops/weeds/pasture species support the full lifecycle of P. erythroseptica
- Carrots/cereal/ryegrass
 - But are these true hosts that will exacerbate pink rot in a subsequent potato crop??
- Volunteers why have a rotation gap if we can't control volunteers
 - A major issue in cool temperate areas

Interactions (with other pathogens)

Root galling (Spongospora)

Pink rot (Phytophthora)

Sclerotinia

Rhizoctonia (canker)

Issues - symptom identification and multiple rot interactions

Textbook symptoms

Research gap - understanding pathogen interactions

- Powdery scab (weakened root system) ↑ likelihood of pink rot
- Rhizoctonia (aerial tubers/canker) 个 likelihood of pink rot
- Sclerotinia (stem damage) 个 likelihood of pink rot
- Likely to be interactions with other pathogens:
 - e.g. Nematodes, Verticillium, black dotetc,...
- Rot interactions (bacterial/water rots) with pink rot

Searching the literature

R. S. Tegg and C. R. Wilson

Table 21.1 The major fungal and fungal-like soilborne pathogens and diseases of potato and the number of articles that studied these pathogens/diseases in the decade 2011–2021

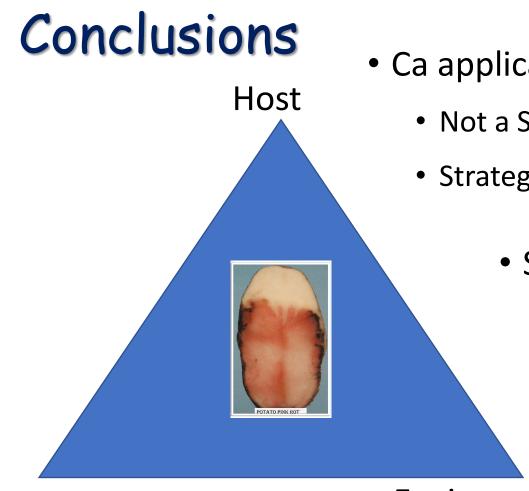
Potato pathogen species	Disease	Number of WoS articles (2011–2021) ^a
Colletotrichum coccodes	Black dot	53
Fusarium spp.	Fusarium dry rots	85
Helminthosporium solani	Silver scurf	41
Phytophthora erythroseptica	Pink rot	26
Pythium ultimum var. ultimum	Leak	22
Rhizoctonia solani	Black scurf/stem canker	117
Sclerotium rolfsii	Stem rot	33
Spongospora subterranea	Powdery scab (PMTV vector)	98
Synchytrium endobioticum	Wart	35
Verticillium dahliae and V. albo- atrum	Verticillium wilt	184

Limited active research on many soilborne diseases, especially pink rot

Most on fungicide resistance (USA)

^aNumber of articles was determined using Web of Science search for disease and/or pathogen in title and/or abstract from 2011 to 2021

526


Summary - further R&D needs

Improved detection and management of pink rot

Determining the role of alternative hosts and volunteer potatoes in maintenance of soil-borne pathogen populations

Understanding interactions between soil-borne potato diseases, physical factors and disease management practices

• Ca applications/pH modification for pink rot control

- Not a Silver bullet
- Strategies that provide insight into soil health are still useful.
 - Soil characterisation/site analysis
 - Soil quality/landform/slope/aspect associated with pink rot in some cases.

Pathogen

Environment

 Identified many research gaps and opportunities for future investment

