

Tasmanian Institute of Agriculture

TIA is a joint venture of the University of Tasmania and the Tasmanian Government

Mechanisms & manipulation of resistance to powdery scab in potato roots

Calum Wilson Professor of Plant Pathology, University of Tasmania

6th October 2022 - AUSPICA Potato Conference, Ballarat

Our powdery scab team Tamil Sadegh Annabel Jonathan Xian Eda Alieta Samantha Plant & Food RESEARCH RANGAHAU AHUMARA KAI 1 Robert David Hort Innovation **Australian Government**

UNIVERSITY of TASMANIA

Australian Research Council

Powdery Scab

Estimated Australian losses - AUD\$13.4 M p.a.

Adversely impacts root function & plant growth

Project global goals

- Reduce losses due to root disease caused by infections with *S. subterranea*
- Reduce requirements for agronomic inputs needed to compensate for reduced root function in diseased plants and greater quality produce with better storage capability
- New disease management and resistance screening tools

Project research goals

New rapid resistance screen

- *In vitro* assay for varietal resistance with reliable results in less than 1 week
- Generate a resistance listing of potato varieties
- Identify gene markers associated with resistance to root binding

New resistant varieties

• Using our rapid screen, select for variants with enhanced resistance to root binding

New controls targeting root binding

- Where on potato roots do zoospores bind?
- Can we interfere with these binding sites?

New rapid cultivar screen

Highly	Moderately	Moderately	Good
susceptible	susceptible	resistant	resistance
Nicola	Gold Rush	Russet Burbank	Russet Nugget
Liseta	Yukon Gold	Desiree	Granola
Kranz	Tasman	Dawmore	Tolaas
Shepody	Spunta	Sebago	Tolangi Delight
Shine	Pontiac	Brake light	
Red Ruby	Frontier Russet	Ruby Lou	
Patrones	Lustre	Fontenot	
Delaware	Wilwash	Purple Congo	
Nooksack	Leven	Cranberry Red	
Coliban	Bintje	Nampa	
Southern Cross	Pentland Dell	Spey	5-
Kennebec	Mainstay	Banana	4-
Diment	Cariboo	Pink Eye	40.
Kipfler	Atlantic	Dutch Cream	(d)00
Up-to-Date	Chiefton		60-2- · · · · · · · · · · · · · · · · · ·
	Sequoia		
	Bismark		
	Yellow King		

Variety resistance rankings (select public varieties) based on the novel root attachment assay.

New resistant varieties

Somaclonal selection

6 varieties were subject to somaclonal selection

Screen for zoospore attachment

 All varieties showed variation with some somaclonal lines showing greatly reduced root attachment

New resistant varieties

Glasshouse screening

• Those showing reduced zoospore attachment generally also showed less disease in glasshouse challenge

New controls targeting root binding

Target root surface proteins

- Trypsin shaving technique
- Strip only surface exposed proteins
- Candidate receptor proteins identified

Disrupting root binding

• Enzymes targeting proteins reduced zoospore attachment suggesting removal of glycosylated protein receptor

Non-trypsin treated Iwa root hairs incubated with Spongospora zoospores

Key project outcomes

We now have:

- A rapid variety screen for root attachment/infection
- Varietal variants that have enhanced disease resistance
- Candidate targets for pathogen binding sites (receptors) on roots

Some other interesting things we are doing

Potato root exudates attract or repel the pathogen

- Attractants and repellents have been identified
- These are associated with cultivar resistance
- These make interesting breeding markers

Chemotaxis attractants		
Tyramine		
Glutamine		
Proline		
Pinatol		
Trehalose		
Raffinose		
Asparagine		
Serine		
Chemotaxis inhibitors		
Spermine		
Choline		

Some other interesting things we are doing

Potato root exudates attract or repel the pathogen

- Attractants and repellents have been identified
- These are associated with cultivar resistance
- These make interesting breeding markers

Bacterial rhizosphere root inoculant

• Selected to interfere with root signals to pathogen and reduce infection when applied as a seed dressing

Bacterial root inoculant

Increased potato root growth and tuber yields

Bacterial root inoculant

Reduced root disease and impact on root damage

Control RR15 RR15 + Ss Ss

Target putative root receptors for zoospore binding and/or develop somaclonal variants to generate highly resistant varieties

• Remove these receptors through conventional breeding or CRISPR to generate extreme resistance

Stimulation of a larger more robust root system that can resist and/or tolerate root infections for greater yields

- Application of beneficial rhizosphere bacteria as seed dressings
- Plant growth promotors
- Plant defense activators

Understanding interactions between soil-borne potato diseases and their management practices

- How do different potato diseases encourage or inhibit infections by other pathogens
- How does management interventions (fungicides, irrigation etc) affect other diseases
- What resistance factors might be linked/enhanced/inhibited

Determining the role of alternative hosts and volunteer potatoes in maintenance of soil-borne pathogen populations

- A rotation isn't a rotation with volunteers but how many are needed to cause a problem
- What rotational crops will encourage (or inhibit) powdery scab

Tasmanian Institute of Agriculture

TIA is a joint venture of the University of Tasmania and the Tasmanian Government

I welcome any questions?

Calum.Wilson@utas.edu.au